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The Importance of Heavy-Quarkonium Physics

• A useful theoretical laboratory for understanding the interplay between perturbative and nonper-
turbative QCD.

– The heavy-quark expansion gives better theoretical control over nonperturbative effects.

– Potential models are valid.

– Fock-state expansion is expansion is well controlled.

• Insights gained in studying heavy quarkonium will likely be important in other areas.

– Surprising enhancements of NLO (NNLO) cross sections by an order of magnitude compared
to LO (NLO) cross sections.

– All-orders resummation of the velocity expansion may have implications for resummation of
higher-twist effects in light-hadron processes.

• There is a great deal of activity in heavy-quarkonium in collider experiments.

– CDF, D0, Belle, BESII, ALICE, ATLAS, CMS, LHCb, PHENIX, STAR all have active programs
in heavy-quarkonium physics.

– Already 47 papers on quarkonium physics have been written by the LHC experiments.
Many more LHC results to come.

• We should take advantage of the wealth of experimental information to learn more about QCD.



Heavy Quarkonium: Progress, Puzzles and Opportunities

Nora Brambilla (TU München), G.T. Bodwin (ANL), et al.
Eur. Phys. J. C71, 1534 (2011)

• Members of the Quarkonium Working Group (QWG) have prepared a comprehensive (181 page)
document that describes recent progress in quarkonium physics and the outstanding current
issues in experiment and theory.

• The document also summarizes new opportunities in quarkonium physics at present and future
facilities.

• It is an important resource for the collider experimental programs, especially at the LHC.

• Topics covered are spectroscopy, decay, production, production in media, and the experimental
outlook.

• GTB was a coordinator and principal author of the section on production.



Gluon Fragmentation to a color-singlet QQ̄ pair in order v4

GTB (ANL), U-Rae Kim (Korea U.), and Jungil Lee (Korea U.)

• Why is order v4 important?
(v is the heavy-quark velocity in the quarkonium CM frame.)

– Gluon fragmentation to a color-octet QQ̄ pair is thought to be the dominant J/ψ production
mechanism at large pT .

– But the color-octet contribution by itself is not the complete story.

– Gluon fragmentation to a color-singlet QQ̄ pair at order v4 is connected to gluon fragmenta-
tion to a color-octet QQ̄ pair through a logarithm of the factorization scale.

– Suggests that gluon fragmentation to a color-singlet QQ̄ pair may be important at order v4.

– Only the sum of the octet and singlet contributions is independent of the factorization scale.



• The calculation is technically challenging.

– Four partons in the final state.

– Two real gluons potentially produce double IR divergences.

– Angular integrals in the fragmentation function are over only the
transverse directions—awkward.

– Four derivatives with respect to the external momenta produce an explosion of terms and
lead to double IR divergences.

– This is the first NRQCD calculation involving two-loop renormalization of NRQCD operators.

• Strategy of the calculation

– Remove divergences by making infrared subtractions.
Construct subtractions using a new scaling method instead of dipole subtractions.

– Evaluate the finite part numerically.

– Evaluate the subtractions analytically in dimensional regularization.

– Remove the single and double poles in ε by absorbing them into 3S1 and 3PJ color-octet
NRQCD matrix elements.

– Requires calculation of the order-ε terms in the 3S1 and 3PJ color-octet short-distance coef-
ficients.

• Work on this calculation is nearing completion.



Factorization Theorems for Exclusive Quarkonium Production

G.T. Bodwin (ANL), J. Lee (Korea U.), X. Garcia i Tormo (ANL, U. of Alberta)
Phys. Rev. Lett. 101, 102002 (2008)

Phys. Rev. D 81, 114014 (2010)

Based on work on factorization theorem for light mesons.
Phys. Rev. D 81, 114005 (2010).



Factorization in Hard-Scattering Processes

• Factorization theorems are the theoretical foundation for predictions in perturbative QCD.

• The goal in factorization is to separate
perturbative processes at the scale of the large momentum transfer Q
nonperturbative processes at the scale of ΛQCD or smaller.

• The perturbative contributions are contained in the short-distance coefficients.

– The short-distance coefficients are process dependent.

– The short-distance coefficients can be calculated in perturbation theory.

• The nonperturbative contributions are contained in long-distance quantities, such as parton dis-
tribution functions, NRQCD matrix elements, light-cone distributions.

• The predictive power of factorization relies on the universality (process independence) of the
long-distance quantities.



Why Consider Factorization Theorems for Heavy-Quarkonia?

• No explicit proofs of factorization existed for heavy-quarkonium production—only conjectures.

• An apparent problem with factorization was noticed in B-meson decays to P -wave quarkonium
in NLO [Song, Meng, Gao, Chao (2003)].

• Nothing definite was known about the possible corrections to heavy-quarkonium factorization
formulas.



Statements of the Theorems

• We proved factorization formulas for two exclusive processes:

– e+e− → charmonium + charmonium,

– B → light meson + charmonium.

• These are the first factorization theorems to be proven for quarkonium production.

e+e− → charmonium + charmonium

• The amplitude has the factorized form
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Aij 〈H1|Oi|0〉 〈H2|Oj|0〉 .

〈Hn|Oi|0〉 is an NRQCD matrix element.
Aij is a short-distance coefficient.

• Holds to all orders in αs up to corrections of order (mcv
2)2/s for e+e− annihilation to two S-wave

charmonia.



B → light meson + charmonium

• The amplitude has the factorized form
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FB→K
f is a B-meson to light-meson form factor.

ΦKj is a light-meson light-cone distribution amplitude.
ΦB1 is a B-meson light-cone distribution amplitude.
Aie and A′ije are short-distance coefficients.

• Similar to the factorized form forB-meson decay to two light mesons [Beneke, Buchalla, Neubert,
Sachrajda (2000)].

• Holds to all orders in αs up to corrections of order mcv
2/mb for B-meson decays to an S-wave

charmonium.
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Soft and Collinear Gluons

• For hard-scattering processes in gauge theories, low-virtuality contributions can arise from soft
gluons and collinear gluons.

Soft Gluons

• Soft (S) gluon momenta scale as

kS ∼ QεS(1, 1, 1⊥),

εS ¿ 1.

• There is a soft, logarithmic singularity associated with the limit εS → 0.



Collinear Gluons

• Take the momenta of the external mesons to lie approximately along the + and − light-cone
directions.

• Collinear (C±) gluon momenta scale as
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+
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−
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η
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• For massless particles, there is a collinear logarithmic singularity that is associated with the limit
η± → 0.

• There is also a soft logarithmic singularity that is associated with the limit ε± → 0.

• For heavy quarks, the quark mass m protects the amplitude from divergences in the collinear
limit.

– However, we consider would-be collinear divergences that appear in the limit m→ 0.

– Allows us to organize low-virtuality logarithms associated with the would-be collinear singu-
larities.



Leading Regions of Feynman Diagrams

• Leading regions are the Feynman-diagram topologies that yield singularities that are leading in
powers of Q.

• Libby and Sterman (1978) and Collins, Soper, and Sterman (1989):
One can find the leading regions for gauge theories by analyzing pinch singularities in the mo-
mentum contours of integration and by making use of power-counting arguments.



• Work in the Feynman gauge.

• The conventional leading regions have the form

• J± are jet subdiagrams, which contain the external mesons and associated collinear gluons.

• S is a soft subdiagram, which contains soft gluons.

• H is a hard subdiagram, which contains only propagators with virtuality of order Q2.

• In the conventional picture of the leading regions, soft gluons attach to the collinear subdiagrams
and collinear gluons attach only to the hard subdiagram.



A Previously Unnoticed Complication from Low-Energy Collinear Gluons

• Low-energy collinear gluons can couple to soft gluons.

• Consider a two-loop example in which a C+ gluon attaches to a soft gluon:

• Gives a contribution that is leading in Q if ε+ ∼ εS.

• Hence, the leading regions must include couplings of collinear gluons to soft gluons.

• Power-counting arguments also show that low-energy collinear gluons can couple to each other,
as well as to the hard subdiagram.



• The neglect of low-energy collinear gluons was a loop-hole in all existing proofs of factorization
for inclusive and exclusive processes.
Discussed for exclusive light-meson production in G. T. Bodwin, X. Garcia i Tormo and J. Lee,
Phys. Rev. D 81, 114005 (2010).

• It follows that the leading regions are more complicated than previously thought:



Tools for Proving Factorization

Collinear Approximations
[GTB (1984); Collins, Sterman, and Soper (1985).]

• In the collinear-gluon propagator numerator, make the replacement

gµν =⇒

8
>>><
>>>:

kµn
−
ν

k · n− (C+),

kµn
+
ν

k · n+
(C−).

– n− and n+ are light-like vectors in the − and + directions, respectively.

• The approximations are exact at the collinear singularities.

• The index µ must attach to a non-C± line.

• The collinear approximations are proportional to kµ.
Longitudinal gluon polarization (pure gauge).



Soft Approximation
[Grammer and Yennie (1973); Collins, Sterman, and Soper (1981).]

• In the soft-gluon propagator numerator, make the replacement

gµν =⇒ kµpν

k · p.

– The index µ attaches to a line with momentum p.

• The soft approximation is exact at the soft singularity.

• The soft approximation is proportional to kµ.
Longitudinal gluon polarization (pure gauge).



Decoupling Relations
[Collins and Soper (1981); GTB (1984); Collins, Sterman, and Soper (1985).]

• For longitudinally polarized gluons of the same type (S, C+, C−), the graphical Ward-Takahashi
lead to a decoupling relation:

• The arrows represents the gluon-propagator numerator factors from the soft, C+, or C− approx-
imation.

• The ‘“eikonal” (double) lines have

– vertices of the form n−µ ,n+
µ , or pµ,

– propagators of the form 1/(k · n−), 1/(k · n+), or 1/(k · p).

– The eikonal lines are path-ordered exponentials of path integrals of gauge fields.



Factorization of the Soft and Collinear Singularities

• In analyzing the soft and collinear singularities, we need to consider the possibility that different
gluons can approach the soft and collinear limits at different rates.

– Power-counting arguments show that the exterior divergences “control” the interior diver-
gences.

• Follow an iterative procedure, starting with the singularities that are innermost in the Feynman
diagrams and working to the outside.

• Apply the soft and collinear approximations and the decoupling relations at each stage.

• New eikonal-line identities can be used to combine contributions from successive stages.



• The result is that the soft and collinear singular contributions decouple:

S̃, J̃± denote the singular parts of S and J±.

Cancellation of Soft Singularities

• The soft eikonal lines that attach to a quark and an antiquark in a given meson cancel.

• They run in opposite directions (up to corrections of order mv/Q).

• They end on space-time points that are separated by kµ/Q→ 0.

• The cancellation relies on the color-singlet nature of the quarkonium.



Cancellation of Low-Energy Collinear Singularities

• There is also a cancellation of the parts of the quark and antiquark collinear eikonal lines for
which the energies of the collinear gluons are much less than Q.

• Implies, that the couplings of the low-energy C± gluons to subdiagrams outside J± cancel, but
only after considerable re-organization.

Redefinition of the Jet and Hard Functions

• Now we can extend the ranges of integration in J̃± up to an ultraviolet cutoff µF ∼ Q, which
acts as a factorization scale.
Incorporates collinear logarithms into J̃±.

• Re-define H̃ to be the complete amplitude divided by J̃+ and J̃−.

• H̃ is free of soft and would-be collinear singularities and their associated logarithms.

• The amplitude for e+e− → charmonium + charmonium now has the form

A = J̃
− ⊗ H̃ ⊗ J̃

+
,

• H̃ contains only virtualities of order Q2 and J̃+ and J̃− contain all of the collinear contributions
with virtualities ¿ Q.



NRQCD Factorization

• A further factorization of J̃+ and J̃− into products of NRQCD matrix elements and short-distance
coefficients leads to the stated factorized form.



Other Activities

• Convener, Production Section of the Quarkonium Working Group, 2002–present

• Convener, Quarkonium Working Group, 2005–present

• Proposer and organizer, Kavli Institute on Effective Field Theories, Beijing,
August 3–September 11, 2009

• Co-chair of the local organizing committee, 7th International Workshop on Heavy Quarkonium,
FNAL, May 18–21, 2010

• Convener, Heavy Quarks Section, International Conference on Quark Confinement and the
Hadron Spectrum, Madrid, August 30–September 3, 2010
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Questions

Why Do We Need to Consider Gluons with Energy Less Than ΛQCD?

• Because of color confinement, gluons with momentum components less than of order ΛQCD are
unphysical.

• However, as we have seen, low-energy gluons can appear in perturbation theory in leading
power in Q, for example, in calculations of short-distance coefficients.

• In order to establish the consistency of perturbative calculations of short-distance coefficients, it
is necessary to prove that the contributions from low-energy gluons can be re-organized into the
standard factorized form.



Why can’t one treat the low-energy collinear gluons in the soft approximation?

• Then they would be accounted for in the soft (usoft) part of the SCET action.

• The problem is that the soft approximation becomes singular for collinear gluons.

• Let the momenta of a quark and antiquark in a meson be pq and pq̄, with

pq =

"
zQ,

p2
⊥

2zQ
, p⊥

#
; pq̄ =

"
(1− z)Q,

p2
⊥

2(1− z)Q
,−p⊥

#
; p⊥ ∼ ΛQCD.

• The soft approximations for the quark and antiquark lines are

g
µν

=⇒

8
>>><
>>>:

kµpνq

k · pq
for the quark;

kµpνq̄

k · pq̄
for the antiquark.

• When k is collinear to pq (pq̄), the quark (antiquark) soft approximation becomes infinite and the
cancellation between the quark and antiquark contributions fails.
The soft subdiagram fails to decouple.

• For soft gluons, the cancellation holds up to corrections of order ΛQCD/Q, but for collinear
gluons, the cancellation fails whenever p⊥ is nonvanishing.



The contributions from low-energy gluons have scaleless integrands. Why don’t they simply vanish in dimensional regularization?

• Integrals with scaleless integrands vanish when the limits of integration are 0 or ±∞.

– Extending the range of integration to infinity, as in the method of regions, introduces the
possibility of double counting.

– There is no proof that such a procedure is correct.

– In the end, the contributions from the low-energy gluons cancel, but only after considerable
re-arrangement.

– The cancellation does not rely the range of integration being infinite.

– In our proof, there is no double counting issue because we only need to show that the soft
and collinear singularities decouple.



Factorization at Each Energy Level

• At each energy level, we need to consider

– soft gluons with energy of a nominal scale (NS),

– collinear gluons with energy of the nominal scale (NS),

– collinear gluons with energy of the large scale (LS).

– The LS is much larger than the NS, but much smaller than the NS of the next larger (inner)
level.

• At the highest energy level, we have a configuration of the form

– We have suppressed

∗ the antiquark lines in each meson,

∗ gluons at lower levels, which lie to the outside of the gluons that are shown.



• Use the collinear approximations and decoupling relations to decouple the LS collinear gluons:



• Use the collinear approximations and decoupling relations to decouple partially the NS collinear
gluons:

– The NS collinear gluons have eikonal lines that attach to the soft NS gluons.



• Use the soft approximation and decoupling relation to decouple partially the soft gluons, along
with the attached collinear eikonal lines:

• Use relationships between the NS collinear eikonal lines to recombine them:



• Combine the NS and LS collinear eikonal lines:

• This same procedure can be used at the next lower (outer) level.

– The new soft and collinear eikonal lines that appear at each level can be combined with the
soft and collinear eikonal lines that appeared at the previous level.



• Proceeding iteratively, we can achieve the factorized for all levels:


